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Evidence for a Common Ethnic Origin of Cystic
Fibrosis Mutation 3120�1GrA in Diverse
Populations

To the Editor:
Cystic fibrosis (CF) is a common recessive disorder in
Caucasians, but little is known about its incidence in

other populations (Welsh et al. 1995). In a recent study,
however, Macek et al. (1997b) described a subset
of specific CF transmembrane-conductance regulator
(CFTR) gene mutations in African American CF pa-
tients. One splicing mutation, 3120�1GrA in intron
16, was particularly frequent and accounted for ap-
proximately half the “African” CF chromosomes in the
group that Macek et al. studied (Macek et al. 1997b).
This mutation also has been identified in four native
African CF patients, on 5/8 chromosomes (Carles et al.
1996). Furthermore, it has been demonstrated that
3120�1GrA is a predominant CF mutation in the East-
ern Oasis population of Saudi Arabia (El-Harith et al.
1997). Finally, three Greek CF families have been re-
ported to harbor this mutation (Tzetis et al. 1997). These
observations indicate that CF mutation 3120�1GrA is
present in diverse populations from different continents.

To examine whether the 3120�1GrA mutation has
a common origin in all these populations or whether its
widespread distribution is the result of recurrent mu-
tational events, we analyzed DNA samples obtained
from 17 unrelated CF patients in four different popu-
lations and from 8 unrelated African CF carriers (fig. 1).
In the first cohort, six CF patients were of African Amer-
ican descent, three CF patients originated from Saudi-
Arabia, three CF patients were of Greek origin, and five
CF patients were native Africans (four families came
from South Africa, and one family came from Came-
roon). In the second cohort, eight native African indi-
viduals who had been identified as mutation carriers in
a population-based screening in South Africa (C. Padoa
and M. Ramsay, unpublished data) were included here
as a confirmatory group. The presence of the
3120�1GrA mutation in these different ethnic groups
was confirmed by direct sequencing. We have typed six
intra- and six extragenic RF40LP markers that had been
useful in previous studies to characterize the origins of
numerous other CFTR mutations (Estivill et al. 1987;
Dörk et al. 1992, 1994; Ramsay et al. 1993; Sereth et
al. 1993; Cuppens et al. 1994; Morral et al. 1996). In
addition, we investigated the three highly informative
intragenic CFTR microsatellites that are located in in-
tron 8 (IVS8CA) and intron 17b (IVS17bTA and
IVS17bCA) of the CFTR gene (Zielenski et al. 1991;
Morral and Estivill 1992; Morral et al. 1993).

A common extended 3120�1GrA–associated hap-
lotype could be derived in each of the four study pop-
ulations (table 1). The phasing of haplotypes was based
either on homozygosity or on the analysis of parental
samples in all African and Arab CF families, as well as
in two African American and two Greek CF families. In
the remaining single CF patients, other haplotypes for
the 3120�1GrA allele than those deduced in table 1
would be formally possible. Three of the four single
African American patients, however, were compound
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Figure 1 Geographic origins of 3120�1GrA–carrying individuals whose DNA samples were contributed to this study

heterozygotes for 3120�1GrA and for the major CF
mutation, DF508. The extensively studied DF508 mu-
tation has been shown to have a single origin in several
investigated populations, with a common dimorphic
marker haplotype (Kerem et al. 1989; Dörk et al. 1992;
Claustres et al. 1996; Morral et al. 1996) and three
major intragenic microsatellite haplotypes—23-31-13,
17-32-13, and 17-31-13—accounting for 185% of
DF508 chromosomes (Zielenski et al. 1991; Morral et
al. 1993, 1994; Claustres et al. 1996; Hughes et al.
1996). Under the assumption that the DF508 mutation
has occurred only once and has been introduced into
the African American population by ethnic admixture,
we were able to use the known major DF508 haplotypes
to deduce the most likely haplotypes for the
3120�1GrA allele in the three additional single African
American patients. Within these limitations, all results
obtained with the intragenic CFTR markers were con-
sistent with an identical intragenic haplotype for all in-
vestigated 3120�1GrA alleles—with the exception of
Greek haplotypes, which differed at a single microsat-
ellite locus (IVS8CA) by one repeat unit (16 vs. 17 CA
repeats). These two related intragenic haplotypes to-
gether account for !15% of non-CF alleles in the general
Caucasian population (Morral et al. 1993, 1994, 1996;
Russo et al. 1995; Claustres et al. 1996; Hughes et al.
1996), and we have observed these intragenic haplotypes
only once in a preliminary study of 12 Arab and 10
African non-CF alleles. Thus, our analysis of intragenic
markers indicates that the 3120�1GrA mutation in the
four study populations most likely derives from a com-
mon ancestor. On the 5′ side, the shared haplotype ex-

tends beyond the CFTR gene in all populations, up to
a point where a difference is again observed between the
Greek and the Arab/African CF alleles—namely, distal
to the marker CS.7, which is located 1220 kb upstream
of the CFTR gene. In previous studies, this region be-
tween KM.19 and XV-2c had been found to be prone
to recombinations (Estivill et al. 1987; Dörk et al. 1992).
On the 3′ side, at the extragenic locus pJ3.ll, which is
located some 660 kb downstream of the CFTR gene,
haplotypic variability is even seen within the Arab and
native African patient groups. The 3120�1GrA chro-
mosomes of the African American patients, however,
carried the pJ3.11 MspI allele 1 in every informative
case.

The observed identity of extended CFTR haplotypes
for the 3120�1GrA alleles in the Arab, African, and
African American patients strongly suggests that this
mutation has a common origin in these groups. This
finding is not surprising in the case of Africans and Af-
rican Americans, since the latter group has originated
mostly from the western African coast and came to
North America between the 16th and 19th centuries,
which is too recent to allow origination of significant
CFTR-mutation haplotype changes restricted to African
Americans. It is not quite so simple to explain the pres-
ence of the 3120�1GrA mutation in African and Saudi
Arab patients. Although recent ethnic admixture ac-
counts for a few percent of Africans in Saudi Arabia,
this is very unlikely to explain our findings, since none
of the Saudi families had any anthropomorphological
signs of an African descent. However, a continuous gene
flow between Arab and African populations probably



Table 1

Intra- and Extragenic CFTR Marker Haplotypes of the 3120�1GrA Mutation in Diverse Populations

GROUP AND MUTATIONS

HAPLOTYPEa

MetH
(MspI)

XV2c
(TaqI)

CS.7
(HhaI)

KM.19
(PstI)

J44
(XbaI) IVS8CA

TUB9
(MnlI)

M470
(HphI)

T854
(AvaII)

TUB15
(NsiI)b IVS17bTA IVS17bCA

TUB18
(HinfI)

Q1463
(Tsp509I)

J3.11
(MspI)

CF families:
African American:

Bal236:

3120�1GrA 1 1 2 2 1 17 (2) 1 2 (2) 7 17 (2) 2 1

DF508 1 1 2 2 1 17 (1) 1 1 (1) 31 13 (1) 1 1
Bal719:

3120�1GrA 1 1 2 2 1 17 2 1 (2) 2 7 17 2 2 1

DF508 1 1 2 2 1 17 1 1 (1) 1 32 13 1 1 1
Bal962:

3120�1GrA 1 (1) (2) (2) (1) 17 2 1 2 (2) (7) (17) (2) (2) )

405�3ArC 1 (2) (1) (1) (2) 16 2 1 2 (1) (31) (13) (1) (1) )
Bal963:

3120�1GrA (1) 1 2 2 1 (17) (2) 1 (2) (2) (7) (17) (2) (2) )

DF508 (2) 1 2 2 1 (23) (1) 1 (1) (1) (31) (13) (1) (1) )
Bal964:

3120�1GrA 1 1 2 2 1 17 (2) 1 (2) (2) (7) (17) (2) (2) 1

DF508 1 1 2 2 1 17 (1) 1 (1) (1) (31) (13) (1) (1) 1
Bal965:

3120�1GrA 1 1 2 2 1 (17) (2) 1 (2) (2) (7) (17) (2) (2) )

DF508 1 1 2 2 1 (23) (1) 1 (1) (1) (31) (13) (1) (1) )
Saudi Arabian:

CF10:

3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 2
3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 2

CF16:

3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1
3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1

CF46:

3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1
3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1



Greek:
CF17:

3120�1GrA 2 2 2 2 1 16 2 1 2 2 7 17 2 2 1

1497delGG 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1
CF541:

3120�1GrA 2 2 (2) (2) (1) 16 2 (1) (2) (2) 7 (17) (2) (2) 1

711�3ArG 1 2 (1) (1) (2) 16 2 (2) (1) (1) 33 (13) (1) (1) 2
CF294:

3120�1GrA ) ) (2) (2) (1) 16 2 (1) (2) (2) 7 (17) (2) (2) )

296�1GrC ) ) (1) (1) (2) 16 2 (2) (1) (1) 31 (13) (1) (1) )
Native African:

IM:

3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1
3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1

CL:

3120�1GrA 1 1 2 2 1 17 2 1 2 2 7 17 2 2 1

G1249E 1 1 2 2 1 16 2 1 1 1 22 16 1 1 2
MC1:

3120�1GrA ) 1 ) ) 1 17 ) 1 (2) ) 7 17 2 ) )

3196del54 ) 1 ) ) 1 16 ) 1 (1) ) 7 17 2 ) )
MC2:

3120�1GrA ) 1 ) 2 1 17 ) 1 (2) ) 7 17 (2) ) )

2183delAA ) 2 ) 2 2 16 ) 1 (1) ) 21 16 (1) ) )
M1115:

3120�1GrA 1 1 ) 2 1 17 ) 1 2 2 7 17 2 ) )

DF508 1 1 ) 2 1 23 ) 1 1 1 34 14 1 ) )
African carriers:

SABL1:

3120�1GrA 1 ) (2) (2) (1) (17) 2 1 2 (2) (7) (17) (2) (2) )

Non-CF 1 ) (1) (1) (2) (16) 2 1 2 (1) (33) (13) (1) (1) )
SABL2:

3120�1GrA 1 ) 2 2 1 (17) 2 1 (2) (2) (7) (17) (2) (2) )

Non-CF 1 ) 2 2 1 (16) 2 1 (1) (1) (34) (13) (1) (1) )

(continued)



Table 1 (continued)

GROUP AND MUTATIONS

HAPLOTYPEa

MetH
(MspI)

XV2c
(TaqI)

CS.7
(HhaI)

KM.19
(PstI)

J44
(XbaI) IVS8CA

TUB9
(MnlI)

M470
(HphI)

T854
(AvaII)

TUB15
(NsiI)b IVS17bTA IVS17bCA

TUB18
(HinfI)

Q1463
(Tsp509I)

J3.11
(MspI)

SABL3:

3120�1GrA 1 ) 2 2 1 (17) (2) 1 (2) (2) (7) (17) (2) 2 )

Non-CF 1 ) 2 2 1 (23) (1) 1 (1) (1) (19) (22) (1) 2 )
SABL4:

3120�1GrA 1 1 2 2 1 (17) (2) 1 2 (2) (7) (17) (2) 2 2

Non-CF 1 1 2 2 1 (19) (1) 1 2 (1) (20) (16) (1) 2 2
SABL5:

3120�1GrA 1 ) 2 2 1 (17) (2) 1 (2) (2) (7) (17) (2) (2) 1

Non-CF 1 ) 2 2 1 (19) (1) 1 (1) (1) (35) (13) (1) (1) 1
SABL6:

3120�1GrA 1 ) 2 2 1 (17) 2 1 (2) (2) (7) (17) (2) (2) )

Non-CF 1 ) 2 2 1 (16) 2 1 (1) (1) (30) (13) (1) (1) )
SABL7:

3120�1GrA 1 ) 2 2 (1) 17 (2) 1 (2) (2) (7) (17) (2) 2 )

Non-CF 1 ) 2 2 (2) 17 (1) 1 (1) (1) (19) (19) (1) 2 )
SABL8:

3120�1GrA 1 1 2 2 (1) 17 2 1 2 (2) 7 (17) (2) (2) )

Non-CF 1 1 2 2 (2) 17 2 1 2 (1) 7 (18) (1) (1) ))

NOTE.—Microsatellite analysis was perf40ormed as described (Morral et al. 1993), except that fluorescein-labeled forward primers were used and the products were analyzed on
an ALF sequencer (Pharmacia).

a Dimorphic markers were typed as described elsewhere (Estivill et al. 1987; Williams et al. 1988; Dörk et al. 1992; Morral et al. 1996). Markers located within the CFTR gene
are underlined. Combined haplotypes were constructed from the analysis of homozygous patients (3 Arabs and 1 African) and from the analysis of parental samples (2 African
Americans, 2 Greeks, and 4 Africans). The common haplotypes of the 3120�1GrA alleles are within boxes. In those cases in which the phase could not be established on the
basis of family analysis, numbers shown in parentheses indicate the most likely haplotypes that have been inferred on the basis of the known haplotypes of the DF508 mutation
(Dörk et al. 1992; Morral et al. 1994) and with consideration of the strong linkage disequilibrium between single markers (Dörk et al. 1992; Cuppens et al. 1994; Morral et al.
1996).

b Nucleotide substitution 3041-92G/A in intron 15, located 173 bp upstream of mutation 3120�1GrA and amplifiable together with the mutation in the same PCR product.



Letters to the Editor 661

has persisted for many centuries, in association with
trading and with the spread of the Islamic religion. Thus
far, the Greeks are the only Caucasian population in
which the 3120�1GrA mutation has been identified. A
recurrent mutational event seems to be unlikely, because
the Greek haplotype differs from the others in only two
minor respects: there is a difference of one dinucleotide
unit at the intragenic IVS8CA repeat, a difference that
could result from a single slippage mutation; and the
Greek alleles carry a different extragenic Met-XV2c hap-
lotype that probably is due to a single recombination
event. Similar events at these two marker loci also ac-
count for much of the haplotypic variability associated
with the DF508 mutation, which has been shown to have
a single origin (Morral et al. 1994). Greek and Arab/
African haplotypes of the 3120�1GrA mutation thus
may have diverged from a common ancestor and then
evolved separately in the respective populations. In this
context, it is interesting to note that there are other rare
mutations shared by Saudi Arabs and Greeks, such as
a polyadenylation-signal mutation in the a-globin gene
of Saudi and Greek thalassemia patients (Traeger-Syn-
odinos et al. 1993). Historical contacts—for example,
under Alexander the Great or during the ancient Minoan
civilization—may provide an explanation for the com-
mon ancestry of disease mutations in these ethnically
diverse populations.

Current theories of a heterozygote advantage for CF
carriers of frequent CFTR mutations include increased
survival from diarrheal diseases, genetic drift, and hitch-
hiking (Romeo et al. 1989; Sereth et al. 1993; Gabriel
et al. 1994; Macek et al. 1997a). The presence of a
common ancient CF mutation in African, Saudi Arab,
and Greek populations suggests that this mutation too
may have been selected. This study demonstrates that
the 3120�1GrA mutation shares the same extragenic
CS.7-KM.19 “risk” haplotype with the other frequent
and ancient CF mutations—DF508, N1303K, and
G542X (Dörk et al. 1992; Morral et al. 1993)—but that
it differs from these latter mutations with respect to in-
tragenic CFTR markers. The extragenic CS.7-KM.19
“risk” haplotype recently has been associated with a
selective advantage to the postnatal survival of female
carriers without a family history of CF (Macek et al.
1997a). In summary, our present analysis provides the
first evidence for a common origin of CF among African,
Arab, Greek, and African American populations. The
shared extra- and intragenic 3120�1GrA–associated
haplotype is most easily explained by the assumption of
a single origin for this mutation. 3120�1GrA appears
to be an ancient mutation that may be more common
than previously thought, in populations of the tropical
and subtropical belt, where CF probably is an under-
diagnosed disorder.
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Media Portrayals of Genetics

To the Editor:
The article by Condit et al. (1998) demonstrates some
of the limitations of quantitative analysis. The authors
select from Reader’s Guide articles listed under “hered-
ity” in various time periods. Not surprisingly, such ar-
ticles consistently attribute characteristics to genes.
When the 50 articles selected from the eugenic period
attribute human characteristics to heredity at almost the
same rate as those selected from the 1990s, the authors
conclude that nothing has changed. Predictably, they find
that the “degree of determinism” (which they calculate
to the fifth decimal) is consistent over 90 years of pro-
found scientific and social change.

The paper is an example of the problem of trying to
quantitate what is most compellingly understood in
qualitative terms. Our study of the gene in popular cul-
ture (Nelkin and Lindee 1995), a target of Condit et al.’s
paper, was not a quantitative study for the precise reason
that the counting of such ambiguous and heterogeneous
materials provides little insight into the public meaning
of science. We focused on qualitative changes in a much
broader literature, to suggest that the gene has acquired
new powers as a guide to social policy. In the 1990s,
the cultural meanings attached to the gene are shaping
employment practices, educational policies, and deci-
sions in the courts. The serious issues raised by the high-
profile gene deserve more serious analysis.
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